- Discrete transfer function
- Frequency behaviour LTI systems
- Relation between transfer function and impuls response
- Questions / exercises

Transfer function

Each LTI system can be written as (for FIR systems applies: $a_{i}=0$):
$y[n]=\sum_{i=0}^{M} b_{i} \cdot x[n-i]-\sum_{i=1}^{N} a_{i} \cdot y[n-i]$
In the \mathbf{z}-domain applies:

$$
\begin{array}{r}
Y(z)=\sum_{i=0}^{M} b_{i} \cdot \frac{X(z)}{z^{i}}-\sum_{i=1}^{N} a_{i} \cdot \frac{Y(z)}{z^{i}}=X(z) \cdot \sum_{i=0}^{M} \frac{b_{i}}{z^{i}}-Y(z) \cdot \sum_{i=1}^{N} \frac{a_{i}}{z^{i}} \rightarrow \\
Y(z) \cdot\left(1+\sum_{i=1}^{N} \frac{a_{i}}{z^{i}}\right)=X(z) \cdot \sum_{i=0}^{M} \frac{b_{i}}{z^{i}} \rightarrow \frac{Y(z)}{X(z)}=\frac{\sum_{i=0}^{M} \frac{b_{i}}{z^{i}}}{1+\sum_{i=1}^{N} \frac{a_{i}}{z^{i}}}
\end{array}
$$

H A N

Transfer function

The transfer function $\mathrm{H}(\mathrm{z})$ is the ratio between output $\mathrm{Y}(\mathrm{z})$ and input $\mathrm{X}(\mathrm{z})$:
$H(z)=\frac{Y(z)}{X(z)}=\frac{\sum_{i=0}^{M} \frac{b_{i}}{z^{i}}}{1+\sum_{i=1}^{N} \frac{\boldsymbol{a}_{i}}{z^{i}}}$

Example: Given the third order LTI system:
$y[n]=2 \cdot x[n]-x[n-2]+0.5 \cdot y[n-1]-0.4 \cdot y[n-2]+0.25 \cdot y[n-3]$
The transfer function of this system is then given by:
$H(z)=\frac{2-\frac{1}{z^{2}}}{1-\frac{0.5}{z}+\frac{0.4}{z^{2}}-\frac{0.25}{z^{3}}}=\frac{2 \cdot z^{3}-z}{z^{3}-0.5 \cdot z^{2}+0.4 \cdot z-0.25}$

Remark: it is common to write the transfer function as a quotient of 2 polynomials (with non-negative integer exponents)

Frequency behaviour LTI systems hogestroal \quad van ammemen njimegen

For LTI systems, the transfer function can be used to determine the amplification of signals as a function of the frequency.
Consider a sinelike signal: $\quad x[n]=e^{j \cdot \Omega \cdot n}$
We define $\mathrm{y}[\mathrm{n}]$ as: $\quad y[n]=x[n-1]=e^{j \cdot \Omega \cdot(n-1)}=e^{-j \cdot \Omega} \cdot e^{j \cdot \Omega \cdot n}$
For the Z-transforms of $\mathrm{x}[\mathrm{n}]$ and $\mathrm{y}[\mathrm{n}]$ apply:
$X(z)=\sum_{n=0}^{\infty} e^{j \cdot \Omega \cdot n} \cdot z^{-n}$
$Y(z)=\sum_{n=0}^{\infty} e^{-j \cdot \Omega} \cdot e^{j \cdot \Omega \cdot n} \cdot z^{-n}=e^{-j \cdot \Omega} \cdot \sum_{n=0}^{\infty} e^{j \cdot \Omega \cdot n} \cdot z^{-n}=e^{-j \cdot \Omega} \cdot X(z)$

Since $y[n]=x[n-1]$, it also applies:

$$
Y(z)=z^{-1} \cdot X(z)
$$

Combining both equations gives:

$$
z=e^{j \cdot \Omega}
$$

Example of frequency behaviour

Given: $\mathrm{y}[\mathrm{n}]=0.156 \cdot \mathrm{x}[\mathrm{n}]-\mathrm{x}[\mathrm{n}-1]+\mathrm{x}[\mathrm{n}-2])+1.5 \cdot \mathrm{y}[\mathrm{n}-1]-0.8 \cdot \mathrm{y}[\mathrm{n}-2]$
The transfer function of this system is:

$$
H(z)=\frac{0.156 \cdot\left(1-\frac{1}{z}+\frac{1}{z^{2}}\right)}{1-\frac{1.5}{z}+\frac{0.8}{z^{2}}}=\frac{0.156 \cdot\left(z^{2}-z+1\right)}{z^{2}-1.5 \cdot z+0.8}
$$

The amplification of the system as a function of Ω is then:

$$
H(\Omega)=\frac{0.156 \cdot\left(e^{j \cdot 2 \cdot \Omega}-e^{j \cdot \Omega}+1\right)}{e^{j \cdot 2 \cdot \Omega}-1.5 \cdot e^{j \cdot \Omega}+0.8}
$$

The graphs of the absolute value and angle (phase shift) of $\mathrm{H}(\Omega)$ are shown on the next page.

Example of frequency behaviour

Matlab script (in rough lines):
$\mathrm{W}=0: 0.001: 2^{*} \mathrm{pi}$; \quad \% discrete frequency
z = exp(1j*W);
$H=0.156^{*}\left(z .{ }^{*} z-z+1\right) . /\left(z^{*} z-1.5^{*} z+0.8\right) ; \quad \%$ transfer function plot (W, abs(H), 'red'); grid on;
figure; plot (W, angle(H), 'blue'); grid on;

The following applies:
$H(z)=\frac{Y(z)}{X(z)} \quad \rightarrow \quad Y(z)=H(z) \cdot X(z)$

Consider: $x[n]=\delta[n] \quad \rightarrow \quad X(z)=1 \rightarrow \quad Y(z)=H(z)$

So, the transfer function $\mathbf{H}(\mathbf{z})$ equals the \mathbf{z}-transform of the impuls respons.

H A N

Example impulse response ${ }^{\text {rosestroal }}\langle$

Assume: $y[n]=5 \cdot x[n]-3.6 \cdot x[n-1]+1.4 \cdot y[n-1]-0.48 \cdot y[n-2]$
The first 10 values of the impuls response can be calculated directly from the diffence equation:

$$
\{5,3.4,2.36,1.672,1.208,0.8886,0.6643,0.5034,0.3859,0.2987\}
$$

The transfer function equals:

$$
\begin{aligned}
& H(z)=\frac{5-\frac{3.6}{z}}{1-\frac{1.4}{z}+\frac{0.48}{z^{2}}}=\frac{5 \cdot z^{2}-3.6 \cdot z}{z^{2}-1.4 \cdot z+0.48}=\frac{5 \cdot z^{2}-3.6 \cdot z}{(z-0.8) \cdot(z-0.6)} \rightarrow \\
& H(z)=\frac{2 \cdot z}{z-0.8}+\frac{3 \cdot z}{z-0.6}
\end{aligned}
$$

The impuls response then equals: $h[n]=2 \cdot 0.8^{n}+3 \cdot 0.6^{n}$
The first 10 values equal according to this equal: $\{5,3.4,2.36$, $1.672,1.208,0.8886,0.6643,0.5034,0.3859,0.2987$ \}

Questions / Exercises

1. Give the tranfer functions of the difference equations given below.
a. $\mathrm{y}[\mathrm{n}]=(\mathrm{x}[\mathrm{n}]+\mathrm{x}[\mathrm{n}-1]+\mathrm{x}[\mathrm{n}-2]+\mathrm{x}[\mathrm{n}-3]+\mathrm{x}[\mathrm{n}-4]+\mathrm{x}[\mathrm{n}-5]+\mathrm{x}[\mathrm{n}-6]) / 7$
b. $\mathrm{y}[\mathrm{n}]=\mathrm{x}[\mathrm{n}]-\mathrm{x}[\mathrm{n}-2]+0.9 \cdot \mathrm{y}[\mathrm{n}-2]$
c. $y[n]=2 \cdot x[n]-1.6 \cdot x[n-1]+0.8 \cdot y[n-1]$
2. Give the difference equation of the following transfer functions.
a. $H(z)=\frac{1}{z-1}$
b. $H(z)=\frac{2 \cdot z}{1-0.8 \cdot z+0.5 \cdot z^{2}}$
c. $H(z)=\frac{3}{z+0.5}-\frac{2}{z-0.7}$
d. $H(z)=\frac{z}{2-0.8 \cdot z+0.5 \cdot z^{2}}$
3. Calculate the first 10 samples of the impuls response of the systems described by the transfer functions of question 2.

Questions / Exercises

4. Assume an analogue sine $x(t)$ given by: $x(t)=X_{\text {top }} \cdot \sin \left(\omega \cdot t+\varphi_{0}\right)$

The signal $x(t)$ is sampled at a sample frequency of $f_{\text {sample }}$.
a. Give the relation between the angular frequency of the discrete signal $X[n]$ and ω and $f_{\text {sample }}$ -
b. What is the range of the angular frequency of $\mathrm{x}[\mathrm{n}]$ if the sampling meets the theorema of Shannon?
5. Reason that the steady state value of a step response equals:

$$
y[n \rightarrow \infty]=H(1)
$$

b. Calculate the steady state value of the step response of the systems given by question 1 and 2.

Questions / Exercises

6. Given a LTI system with difference equation:

$$
y[n]=0.4 \cdot x[n]+0.9 \cdot y[n-1]
$$

a. Calculate the steady state step response of this system.
b. Assume the input signal of the system is obtained from an analogue signal $x(t)=2 \cdot \sin (\omega \cdot t)$ that is sampled by a frequency of $10[\mathrm{kHz}]$. Calculate the amplitude and phase shift of the output $y[n]$ when $f=200[H z]$.
c. Give in a graph the frequency response plot of this system (you don't have to use logarithmic scales). Plot it in the range:
$0 \leq \Omega \leq \pi$. Use matlab to make the plot.
d. What kind of filter is this LTU system?

