Lesson 5

- Combination of analogue and digital systems
- Relation between s(Laplace) and z (discrete)
- Euler approximation
- Tustin approximation
- Questions / exercises

Combination of discrete and analogue systems

$$
Y(z, s)=\frac{H_{c}(z) \cdot H_{p}(s)}{1+H_{c}(z) \cdot H_{p}(s)} \cdot Y_{s p}[z]
$$

Relation between z and s

Consider a function $\mathrm{x}(\mathrm{t})$ that is sampled with a sample time of T_{s}.

The z-transform of $\mathrm{x}[\mathrm{n}]$ can be written as: $\mathrm{X}(\mathrm{z})=\sum_{n=0}^{\infty} x[n] \cdot \mathrm{z}^{-n}$

The discretized signal $x(t)$ can be written as a sum of dirac functions $\delta(t)$:

$$
\begin{gathered}
x(t)=\sum_{n=0}^{\infty} x\left(n \cdot T_{s}\right) \cdot \delta\left(t-n \cdot T_{s}\right) \rightarrow X(s)=\int_{0}^{\infty} \sum_{n=0}^{\infty} x\left(n \cdot T_{s}\right) \cdot \delta\left(t-n \cdot T_{s}\right) \cdot e^{-s \cdot t} \cdot d t \rightarrow \\
X(s)=\sum_{n=0}^{\infty} x\left(n \cdot T_{s}\right) \cdot e^{-s \cdot n \cdot T_{s}}=\sum_{n=0}^{\infty} x[n] \cdot e^{-s \cdot T_{s} \cdot n}
\end{gathered}
$$

$\underset{3}{X(z)}$ and $X(s)$ equal if: $z=e^{s \cdot T_{s}} \rightarrow s=\frac{\ln (z)}{T_{s}}=f_{s} \cdot \ln (z) \quad f_{s}=\frac{1}{T_{s}}$

Euler approximation

Analogue systems can be combined with discrete systems by the substitution of s by: $s \rightarrow f_{s} \cdot \ln (z)$.

However, this substitution has a big disadvantage:
the numerator and denumerator of the overall transfer function are no polynomial functions anymore. This makes a the system description in terms of poles and zeros, stability, bode diagrams, etc. as you learned it impossible.

Euler gives an approximation of $z=e^{s \cdot T_{s}}$ in such a way that the overall transfer function remains a quotient of 2 polynomials, so all theorie discussed remains valid.

Forward Euler (1)

Assume the function: $\quad s=f_{s} \cdot \ln (z)$

The first order Taylor-series approximation of s around $z=1$ equals:
$\left.s \approx s(z=1)+\frac{d s}{d z}\right]_{z=1} \cdot(z-1)=f_{s} \cdot(z-1)$

This approximation is called the forward difference Euler approximation (or simply forward Euler).

Forward Euler (2)

Another way to look at it:
A derivation in the time domain corresponds to a multiplication of s in the s-domain. So:

$y(t)=\frac{d x}{d t} \quad \rightarrow \quad Y(s)=X(s) \cdot s$
n $n+1$

In the time-domain, we can approximate a derivation by:
$y(t)=\frac{d x}{d t} \approx \frac{x[n+1]-x[n]}{T_{s}} \rightarrow Y(z)=\frac{z \cdot X(z)-X(z)}{T_{s}}=X(z) \cdot f_{s} \cdot(z-1)$
We see that a derivation in the time domain corresponds to a multiplication with $\mathrm{f}_{\mathrm{s}} \cdot(\mathrm{z}-1)$ in the z -domain. This means that the

Laplace operator s corresponds to $f_{s} \cdot(z-1)$ in the z-domain

Backward Difference Euler

Instead of looking one sample ahead, you can also approximate

$$
y(t)=\frac{d x}{d t}=\frac{x[n]-x[n-1]}{T_{s}} \rightarrow Y(z)=\frac{X(z)-\frac{X(z)}{z}}{T_{s}}=X(z) \cdot f_{s} \cdot\left(1-z^{-1}\right)
$$

We see that a derivation in the time domain corresponds to a multiplication with $f_{s} \cdot\left(1-z^{-1}\right)$ in the z-domain. This means that the Laplace operator s corresponds to $f_{s} \cdot\left(1-z^{-1}\right)$ in the z-domain

Example Euler

Assume a second order Butterworth low pass filter, given by:
$H(s)=\frac{1}{\left(\frac{s}{\omega_{0}}\right)^{2}+\sqrt{2} \cdot \frac{s}{\omega_{0}}+1}$

The corresponding discrete transfer function $\mathrm{H}(\mathrm{z})$ of it is given by:

$$
\begin{aligned}
& H(z)=\frac{1}{\left(\frac{f_{s}}{\omega_{0}}\right)^{2} \cdot\left(1-z^{-1}\right)^{2}+\sqrt{2} \cdot \frac{f_{s}}{\omega_{0}}\left(1-z^{-1}\right)+1} \rightarrow \\
& H(z)=\frac{z^{2}}{\left(\left(\frac{f_{s}}{\omega_{0}}\right)^{2}+\sqrt{2} \cdot \frac{f_{s}}{\omega_{0}}+1\right) \cdot z^{2}-\left(2 \cdot\left(\frac{f_{s}}{\omega_{0}}\right)^{2}+\sqrt{2} \cdot \frac{f_{s}}{\omega_{0}}\right) \cdot z+\left(\frac{f_{s}}{\omega_{0}}\right)^{2}}
\end{aligned}
$$

H A N

This equation can be used to derive the difference equation.

Tustin

Tustin provides a more accurate approximation of s. It assumes that the quotient $\frac{x[n+1]-x[n]}{T_{s}}$ is the average of the derivative of $x(t)$ at $t=n \cdot T_{s}$ and
 $t=(n+1) \cdot T_{s}$.
$y(t)=\frac{d x}{d t} \quad$ and: $\quad \frac{x[n+1]-x[n]}{T_{s}}=\frac{y[n+1]+y[n]}{2} \rightarrow$
$z \cdot Y(z)+Y(z)=\frac{2}{T_{s}}(z \cdot X(z)-X(z)) \rightarrow Y(z)=X(z) \cdot 2 \cdot f_{s} \cdot \frac{z-1}{z+1}$
A derivation in the time domain corresponds to a multiplication with $2 \cdot f_{s} \cdot(z-1) /(z+1)$ in the $z-d o m a i n$. According to Tustin, the Laplace operator s corresponds to $2 \cdot f_{s} \cdot(z-1) /(z+1)$ in the z-domain.

Example Tustin

Assume a first order high pass filter, given by:
$H(s)=\frac{\frac{s}{\omega_{0}}}{\frac{s}{\omega_{0}}+1}$

The corresponding discete transfer function $\mathrm{H}(\mathrm{z})$ using Tustin is given by:
$H(z)=\frac{2 \cdot \frac{f_{s}}{\omega_{0}} \cdot \frac{z-1}{z+1}}{2 \cdot \frac{f_{s}}{\omega_{0}} \cdot \frac{z-1}{z+1}+1}=\frac{2 \cdot \frac{f_{s}}{\omega_{0}} \cdot(z-1)}{\left(2 \cdot \frac{f_{s}}{\omega_{0}}+1\right) \cdot z+1-2 \cdot \frac{f_{s}}{\omega_{0}}}$

This equation can be used to derive the difference equation.

Questions / Exercises

1. Give the transfer function $\mathrm{H}(\mathrm{z})$ and difference equation of the following analogue systems. Use Euler backward:
a. $H(s)=\frac{1}{1+s \cdot \tau} \quad$ where: $\tau=0.01[s]$. The sample rate is: $f_{s}=1[\mathrm{kHz}]$
b. $H(s)=\frac{1}{1+s \cdot \tau} \quad$ where: $\tau=0.01[s]$. The sample rate is: $\mathrm{f}_{\mathrm{s}}=100[\mathrm{kHz}]$
c. $H(s)=\frac{s \cdot 0.1}{(1+s \cdot 0.02) \cdot(1+s \cdot 0.005)}$. The sample rate is: $\mathrm{f}_{\mathrm{s}}=100[\mathrm{kHz}]$
2. Given a PID controller: $H(s)=5+2 \cdot s+\frac{0.3}{s}$

Give the transfer function $\mathrm{H}(\mathrm{z})$ and the difference equation at a sample rate of 500 [samples/s]. Use Tustin.

Questions / Exercises

3. A first order (analogue) process is described by: $H_{p}(s)=\frac{6}{1+s \cdot 0.5}$

The process is controlled via a discrete P -controller (see figure) with a proportional constant of 5 . The sample rate is $\mathbf{2 0}$ [samples/s].

a. Give the overal transfer function of the system, defined as:
$H(z)=Y(z) / Y_{\text {sp }}(z)$. Use Tustin.
b. Calculate the step response $y[n]\left(y_{s p}[n]=u[n]\right)$.

Questions / Exercises

4. Consider the system of question 3, only now we control the process via a discrete Pl-controller. The proportional constant is 5 , the sample rate is 20 [samples/s]. The integral constant is choosen in such a way that the system is critically damped.
a. Descripe when we can speak of a critically damped system.
b. Calculate the gain of the I-controller.
c. Give the difference equation of the discrete PI-controller.
d. Show in a graph the discrete step response $y[n]$.
